Learning Causal Structure through Local Prediction-error Learning

نویسندگان

  • Sarah Wellen
  • David Danks
چکیده

Research on human causal learning has largely focused on strength learning, or on computational-level theories; there are few formal algorithmic models of how people learn causal structure from covariations. We introduce a model that learns causal structure in a local manner via prediction-error learning. This local learning is then integrated dynamically into a unified representation of causal structure. The model uses computationally plausible approximations of (locally) rational learning, and so represents a hybrid between the associationist and rational paradigms in causal learning research. We conclude by showing that the model provides a good fit to data from a previous experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of the lateral frontal cortex in causal associative learning: exploring preventative and super-learning.

Prediction error--a mismatch between expected and actual outcome--is critical to associative accounts of inferential learning. However, it has proven difficult to explore the effects of prediction error using functional magnetic resonance imaging (fMRI) while excluding the confounding effects of stimulus novelty and incorrect responses. In this event-related fMRI study we used a three-stage exp...

متن کامل

Medial-Frontal Stimulation Enhances Learning in Schizophrenia by Restoring Prediction Error Signaling.

UNLABELLED Posterror learning, associated with medial-frontal cortical recruitment in healthy subjects, is compromised in neuropsychiatric disorders. Here we report novel evidence for the mechanisms underlying learning dysfunctions in schizophrenia. We show that, by noninvasively passing direct current through human medial-frontal cortex, we could enhance the event-related potential related to ...

متن کامل

Compound Stimulus Presentation Does Not Deepen Extinction in Human Causal Learning

Models of associative learning have proposed that cue-outcome learning critically depends on the degree of prediction error encountered during training. Two experiments examined the role of error-driven extinction learning in a human causal learning task. Target cues underwent extinction in the presence of additional cues, which differed in the degree to which they predicted the outcome, thereb...

متن کامل

Partial orientation and local structural learning of causal networks for prediction

For a prediction problem of a given target feature in a large causal network under external interventions, we propose in this paper two partial orientation and local structural learning (POLSL) approaches, Local-Graph and PCD-by-PCD (where PCD denotes Parents, Children and some Descendants). The POLSL approaches are used to discover the local structure of the target and to orient edges connecte...

متن کامل

Error Asymmetry in Causal and Anticausal Regression

It is generally difficult to make any statements about the expected prediction error in an univariate setting without further knowledge about how the data were generated. Recent work showed that knowledge about the real underlying causal structure of a data generation process has implications for various machine learning settings. Assuming an additive noise and an independence between data gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012